Course Description

An urban area changes to keep pace with the shelter, work, recreation, shopping, and travel needs of its inhabitants. In accommodating these human activities, land is consumed, and current trends suggest that land in the United States is being consumed by expanding urban areas at an unprecedented rate. For instance, between 1990 and 2000 in the St. Louis metropolitan region, the urbanized area grew by around 50% even though its population grew by less than 1%. This suggests that the physical space our cities occupy is changing and evolving without, or in some cases despite, changes in population.

This consumption of land triggers several questions:
- What do we do on the land?
- How much land do we use?
- What is the type, manner, and intensity of our use of land?
- What are the environmental, economic, and social consequences of land use change?

Physical planning – managing the way land is used and reused to support human activities – has been a significant and longstanding part of a professional planner's responsibilities. Physical planning in the United States is typically a function of local government. Physical planners use land-use controls (ordinances and regulations) along with site plan review to shape physical planning decisions.

Course Objectives

This course seeks to prepare you to deal with a variety of complexities that characterize the practice of physical planning through a series of hands-on tasks. Rather than learn about issues at an arm's length, you will engage intensely with information and through this experience learn about the possibilities and limitations in physical planning. These tasks will also introduce you to software tools commonly used to analyze and communicate planning information.

By the end of this course you should:
- Understand contemporary, effective physical planning
- Understand the process of physical planning decisions
• Know how to use Adobe software applications to communicate planning analysis and create professional reports
• Know how to use digital spatial data to create effective maps

Course Format

Course content will be covered in recorded lectures, discussions, labs, and work sessions. All class meetings will be conducted via Zoom with meetings link accessible through the course Compass site. In general, Tuesday sessions will be for activities, unstructured discussions and work sessions – a chance to ask questions and get help on assignments. Thursday sessions will be lab sessions. Lab sessions will introduce both software applications and analytical frameworks that will be applied in completing weekly assignments. These sessions will be a hands-on opportunity to become familiar with common software applications used in planning practice. The course brings together some preliminary work and key components all built around planning for physical development at both the regional and site scale. Key topics include:

• Preliminaries
 o Getting familiar with the built environment
 o Map interpretation and making skills
 o Software introductions
• Regional and site scale natural systems analysis
• Socio-economic context and the built environment
• Site engineering analysis
• Site layout and small area plans

All components will be worked on individually. While you are encouraged to discuss the work with each other and with the course instructors, the work and material you hand in must be your own.

Deliverables in the course will include several smaller assignments and a larger report. The first half of the course focuses on suitability analysis as a framework for physical planning at the regional or metropolitan scale. The second half of the semester will focus on site scale planning with weekly assignment that build towards a site plan report. For both sections of the course, intermediate weekly assignments will build will build on each other; therefore it is crucial that you complete assignments on time, as this work will be useful for synthesizing your report.

Course Materials

There are no required books for this course and all required readings will be made available online via the course Compass site. This course involves considerable computer-based work using Adobe Creative Cloud applications and ArcGIS. You can access these applications in
For remote access to campus computing facilities, here are some step-by-step login instructions:

1. Go to https://go.illinois.edu/remotecomputerlabs
2. Select the UIUC AnyWare tab and click the UIUC AnyWare link
3. Log in with uofi\<netID> and your netID password
4. On the left, select Desktops > All Desktops
5. Select a Lab

For more information: https://answers.uillinois.edu/105054

Additionally, the University of Illinois has contracted with LinkedIn to provide students with access to over 1,200 online courses provided by LinkedIn Learning (formerly lynda.com). These courses provide excellent background and additional depth in some of the software packages you will use to include Adobe Creative Suite and ArcGIS. These video based tutorials are taught by industry experts and available 24/7 for convenient, self-paced learning. Links to specific courses can be found on the course Compass site.

Learning Philosophy

This course is designed around the idea of learning by doing. You grasp concepts and develop skills by applying them in a real-world situation rather than only reading about them. You engage your classmates and instructors in conversations about the work. While this is often a more effective way to learn the material covered in this course, you must expect to spend more time working on tasks than you would in a course with only reading and homework assignments.

All of the course material is available on the course Compass site, and it is critical that you read and understand all of this material. This will make classroom time more effective and enhance your experience in the course. Please inform the course instructor if there are any errors or discrepancies on this site.
Course Evaluation

Student evaluation in the class will be based on participation, weekly assignments, and a report assignment. Class participation grades will reflect your command of the assigned readings and contribution to class discussions. Unless noted, attendance during scheduled Zoom sessions is mandatory, and any unexcused absence will reflect in your participation grade. All other grades will depend on the quality of ideas generated and of the presentation of these ideas, on the effectiveness of responses to comments, and on the timely completion of work. For weekly assignment, late submissions will be penalized one point and subsequently one point for each week that they are further delayed. For reports, late assignments will be graded down one letter grade per day (half a letter grade if turned in after class on due date). If you must miss a class session due to special circumstance such as illness or family emergency, you should notify me via e-mail (dallred2@illinois.edu) as soon as possible. All assignments should be submitted to Compass on the due date unless otherwise noted. The course grade earned will be the weighted average of the following components:

- Class participation: 10%
- Preliminary assignments: 10%
- Suitability analysis assignments: 30%
- Site engineering and land use analysis assignments: 30%
- Site plan report: 20%

Transformation of numerical grade to letter grade will be according to the schedule below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Numerical</th>
<th>Grade</th>
<th>Numerical</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>93-100</td>
<td>C+</td>
<td>77-79.9</td>
</tr>
<tr>
<td>A-</td>
<td>90-92.9</td>
<td>C</td>
<td>73-76.9</td>
</tr>
<tr>
<td>B+</td>
<td>87-89.9</td>
<td>C-</td>
<td>70-72.9</td>
</tr>
<tr>
<td>B</td>
<td>83-86.9</td>
<td>D+</td>
<td>67-69.9</td>
</tr>
<tr>
<td>B-</td>
<td>80-82.9</td>
<td>D</td>
<td>60-66.9</td>
</tr>
</tbody>
</table>

The general grading rubric for assignments is as follows:

An “A” assignment demonstrates original thought and synthesis of ideas and sophisticated, cogent analysis. It is clearly written and presented.

A “B” assignment includes above average analysis with appropriate evidence to support ideas. It is clearly written and presented.
A “C” assignment shows a basic level of understanding, with analysis limited to obvious arguments. Writing is competent. It is adequate work.

A “D” assignment misunderstands or misrepresents the material or is so poorly written that it obscures the analysis. It is inadequate work.

Course Policies

Student conduct: From the University Student Code, Article 1, Part 3: Students enrolling in the University assume an obligation to conduct themselves in a manner compatible with the University’s function as an educational institution and suitable to members of the academic community. Students are responsible for knowing their rights and responsibilities as found in the student code at http://www.admin.uiuc.edu/policy/code/index.html.

Special Circumstances: Due to the participatory nature of this course, please communicate any expected or unexpected absences with the instructor as early as possible. Every effort will be made to work with students with unusual or unexpected obligations outside the course (family emergencies, health issues, participation in University sanctioned activities, etc.). Students with disabilities or special needs who require any accommodations to facilitate full participation and completion of the course should contact the instructor as soon as possible. Please refer to the Disability Resources and Educational Services at (http://www.disability.illinois.edu/) for more information.

Safety and Security in the Classroom: Emergencies can happen anywhere and at any time. It is important that we take a minute to prepare for a situation in which our safety or even our lives could depend on our ability to react quickly. When we’re faced with any kind of emergency – like fire, severe weather or if someone is trying to hurt you – we have three options: Run, hide or fight. Please refer to the General Emergency Response Recommendations at http://police.illinois.edu/dpsapp/wp-content/uploads/2016/08/syllabus-attachment.pdf for more information.
Course Schedule

<table>
<thead>
<tr>
<th>WEEK</th>
<th>DATE</th>
<th>TOPIC & ACTIVITIES</th>
</tr>
</thead>
</table>
| 1 | 26-Jan Tuesday & 28-Jan Thursday | **Lecture/Discussion**: Course Introduction
Readings:
Lab: Lab Intro
Assignment: A1 – Understanding Space: Distance, Area and Density |
| 2 | 2-Feb Tuesday & 4-Feb Thursday | **Lecture/Discussion**: Introduction to Physical Planning, Real Estate Markets, Land-Use and Reuse
Readings:
 - Chapter 3: Developers and Their Partners
 - Chapter 13: Stage Three: The Feasibility Study
 - Intro to lesson 6
 - Lesson 10 to 14
 - Lesson 17, 18, 22 & 23
Supplemental: |
<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Lecture/Discussion</th>
<th>Reading</th>
<th>Supplemental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Landscape Architecture Notes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ArcGIS, Illustrator, and Soils</td>
<td>A4a – Slope and Soil Suitability</td>
<td>A3 – Making Maps with GIS and Illustrator</td>
</tr>
<tr>
<td>#</td>
<td>Date</td>
<td>Lecture/Discussion</td>
<td>Readings</td>
<td>Lab:</td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
- Landscape Architecture Notes: Delineating Watersheds
| | Tuesday & 25-Feb Thursday | | | | | |
- Species Habitat Identification handout | Working with In-Design | A4c – Green Infrastructure | A4b – Water Suitability |
| | Tuesday & 4-Mar Thursday | | | | | |
| 7 | 9-Mar | Context, Surroundings and Physical Planning | - Vinod Aranha, Kalpa Baghasingh, Anuttama Dasgupta, Hagisa Ikeda,
<p>| | Tuesday & 11-Mar Thursday | | | | | |</p>
<table>
<thead>
<tr>
<th>8</th>
<th>16-Mar Tuesday & 18-Mar Thursday</th>
<th>Non-instructional days</th>
</tr>
</thead>
</table>
| 9 | 23-Mar Tuesday & 25-Mar Thursday | Lecture/Discussion: Feasibility Analysis and Real Estate Pro Formas
Readings:

Supplemental:

Lab: Using a Real Estate Pro Forma
Assignment: A5b – Real Estate Pro Forma Analysis
Due: A5a – Socio-Economic Context and Social Suitability Analysis |
| 10 | 30-Mar Tuesday & 1-Apr Thursday | Lecture/Discussion: Site Engineering Analysis – Storm and Wastewater Management
Readings:
 Planning the built environment. Planners Press.
- County, P. G. (1999). Low-impact development design strategies: An integrated design approach. *Department of Environmental Resources, Programs and Planning Division, Prince George’s County, Maryland*. (skim)

Supplemental:
<table>
<thead>
<tr>
<th>11</th>
<th>6-Apr Tuesday & 8-Apr Thursday</th>
</tr>
</thead>
</table>
| **Lab:** Site Engineering Analysis – Storm and Wastewater Management
Assignment: A5c – Site Engineering Analysis – Stormwater and Wastewater Management
Due: A5b – Real Estate Pro Forma Analysis |
| **Lecture/Discussion:** Site Layout and Urban Design
Readings:
Supplemental:
- Metrics for Planning Healthy Communities
| **Lab:** Urban Design Paradigms
Assignment: A5d – Urban Design Paradigms
Due: A5c – Site Engineering Analysis – Stormwater and Wastewater Management |
<table>
<thead>
<tr>
<th>Date</th>
<th>Days</th>
<th>Schedule and Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-Apr</td>
<td>Tuesday & 15-Apr Thursday</td>
<td>Non-instructional days</td>
</tr>
</tbody>
</table>
| 20-Apr | Tuesday & 22-Apr Thursday | **Lecture/Discussion**: Site Engineering Analysis – Streets, Traffic, & Grading
Readings:
 - Chapter 8: Introduction to Transportation Planning
 - Chapter 9: Street Capacity
 - Chapter 11: Parking
Supplemental:
Lab: Streets and Traffic
Assignment: A5e – Site Engineering Analysis – Street Layout, and Traffic
Due: A5d – Urban Design Paradigms |
| 27-Apr | Tuesday & 29-Apr Thursday | **Lecture/Discussion**: Small Area Plans
Readings:
Lab: Using SketchUp
Assignment: A5 – Site Plan Report
Due: A5e – Site Engineering Analysis – Street Layout and Traffic |
| 4-May | Tuesday | **Lecture/Discussion**: Course Wrap-up and Work Session
Due: Draft Site Plan Map
- Due May 9th (Sunday): A5 – Site Plan Report |